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Abstract

The nonlinear dynamics of a single ion in a field reversed configuration (FRC) were investigated.
FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a
result of angular invariance, the full three dimensional Hamiltonian system can be expressed as two
coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the
behavior of the system is extremely complex, showing different regimes, depending on the values
of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation
theory and averaging were used to derive the unperturbed Hamiltonian and frequencies of the
two degrees of freedom. The derived equations were then used to find resonances and compare
to Poincare surface-of-section plots. A regime was found where the nonlinear resonances were
clearly separated by KAM curves. The structure of the observed island chains was explained. The
condition for the destruction of KAM curves and the onset of strong chaos was derived, using
Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular
momentum and geometry of the device. After a brief discussion of the adiabatic regime, the paper
goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this
regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In
this case, the system is near-integrable, except in cases of a universal resonance, which results in
large island structures, due to the smallness of nonlinear terms, which bound the resonance. The
linear force constants, dominant in this regime, were derived and the geometry for a large one-to-
one resonance identified. The above analysis showed good agreement with numerical simulations

and was able to explain characteristic features of the dynamics.

PACS numbers: 52.55.Hc, 05.45.Pq, 05.45.Ac, 52.65.Cc, 52.20.Dq, 52.55.Ez



INTRODUCTION

The field-reversed configuration (FRC), see Figure 1, is a toroidal-shaped magnetic-field
geometry that appears well-suited for confining plasmas for the purpose of the controlled,
safe, steady-state production of fusion energy. [1, 2] A primary characteristic that distin-
guishes the FRC from most other toroidal fusion devices is that it has no toroidal magnetic
field. Thus charged-particle motion in FRCs can not be approximated as being guided
along magnetic field lines. For most fusion reactors, such as the tokamak, the magneto-
hydrodynamic (MHD) theory [3] has been used successfully to investigate the physics at
fusion-relevant regimes. It is well known [4, 5] that in the fusion-relevant regime the single-
particle Hamiltonian approach presents a powerful, applicable method to understand the
qualitative features of ion dynamics.

The single ion dynamics inside the FRC have equations identical to those of two strongly
coupled nonlinear oscillators. The strong nonlinearities make for a very interesting system
with various regimes that depend on the values of the coupling constants. Thus both, a
highly nonlinear regime with a set of island chains caused by nonlinear resonances and a
linear regime with a single large universal resonance caused by the intrinsic degeneracy can
be observed.

Stochastic dynamics and resonances in nonlinear oscillators have been extensively studied
in various cases of theoretical and practical interest [6-12]. The present paper is the first
detailed study of the model of coupled resonances that are related to FRC. Using averaging
methods and perturbation theory, we investigate particle dynamics in the FRC under the
variation of two control parameters: geometric factor /3, which is inverse elongation (or
aspect ratio of the FRC in Figure 1) and dimensionless azimuthal angular momentum, P,
that is conserved due to the azimuthal symmetry of the field. It is found that variation of
B and P significantly affect the resonance structure and level of stochasticity.

The paper is organized as follows: In Sec. II the problem is set up and a two dimensional
Hamiltonian is derived using conservation of azimuthal angular momentum, P. The derived
Hamiltonian is then used to discuss possible types of particle orbits that can occur in the
FRC for P > 0 ions. In Sec. III, the impact of P and elongation on resonance structure
and stochasticity is studied using the Hamiltonian derived in Sec. II. First, the unperturbed

Hamiltonian Hj is derived using averaging methods. It is found that for certain range



of values of elongation and azimuthal angular momenta, the unperturbed Hamiltonian is
sufficiently nonlinear and the perturbation sufficiently small, that KAM theory applies and
a resonant island structure bounded by KAM curves is obtained. The paper then goes
on to discuss the break-down of KAM theory with variation of parameters and the onset of
strong chaos. The adiabatic regime, occuring in the large elongation (small 3) limit, where a
significant frequency separation occurs between the two degrees of freedom is also discussed.
In Sec. IV, we turn to the near integrable case that occurs in the limit of higher azimuthal
angular momenta. It is shown that in this limit, the unperturbed Hamiltonian has the form
of two uncoupled harmonic oscillators, so that action-angle variables of a simple harmonic
oscillator can be used in the Hamiltonian expansion. After explaining why the system is
near-integrable at higher azimuthal angular momenta for elongation close to or less than
one, we turn to the case of a large one-to-one universal resonance. It is shown that this
large resonance is a consequence of intrinsic degeneracy, while the set of smaller resonances

occuring at smaller azimuthal angular momenta values is a result of accidental degeneracy.

EQUATIONS OF MOTION AND ORBIT TYPES

I1.A Basic equations of motion
The Hamiltonian for a nonrelativistic particle of charge ¢ in a magnetic field is given
by [13]:
H = % (or — qA)* + (p= — qA.)* + (% - qA¢)2] (1)
Where A, , 4 are the components of the vector potential and p, , 4 are the canonical angular
momenta. As a representative FRC system, a Solov’ev model [14] is used in which the

plasma pressure has a linear dependence on magnetic flux &:
d=r A¢ (2)

In this model, the magnetic flux is described by [15]:

2 2 2.2
@:RQBGQT—RQ<1—T——BZ) (3)

where B, is the amplitude of the magnetic field at the center of the device at r = z = 0,
R is the radius of the separatrix on the midplane at z = 0, and 27 is the distance between

X-points along the z-axis. Equation (3) shows a pressure profile that falls to zero at the
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boundary of the device where ® = 0. From Eq. (2) and (3), we can obtain a vector potential,
Ag. Since the full vector potential of the FRC has only a ¢ component, we get the following

expression for the vector potential:

. . r r2 222\ .
A—A¢¢—Ba§(1—ﬁ— R2>¢ (4)

where QAﬁ is a unit vector in the azimuthal direction. Substituting the vector potential from

Eq. (4) into Eq. (1), the Hamiltonian becomes:

_ Lo o (P _ 2
H—2m[pr+pz+(r qA¢)} (5)

where py is the conserved canonical azimuthal angular momentum. Substitution of Ay from

Eq. (4) into Eq. (5) gives

1 D r2 5222 2

where b = ¢B, /2. The azimuthal angular momentum p, is conserved since there is no angular
dependence in the Hamiltonian. The Hamiltonian above describes a two degree of freedom
time-independent system. After scaling r/R — r, z/R — z, p,/bR — p,, p,/bR — p, and

(m/b*R?) H — H, the dimensionless Hamiltonian becomes:

L) o, o |P s ]
H:§ D, +p, + ?—r(l—r — B22%) (7)
where P = p,/bR?. The last term is a two-dimensional potential V' (r, z):
Lr s ]
V(r,z)=§ ?—7"(1—7" — B%2%) (8)

After applying Hamiltonian equations of motion

. OH ) OH

where ¢; and p; are the coordinate and momentum variables, we get

P2
i+r(1+42P)— e 4r® 4+ 3r° + %2° (4r® — 2r + %2°r) =0 (10)
F+28%2[P—r*(1—-1*—=B%2%)] =0 (11)



Note that the 3 variable can not be scaled away since it appears in Eq. (11) as a 3%z term,
and effects the time scale of z motion relative to r motion.

From Eq. (11), the force along z is zero when z = 0. Given the initial condition
z = p, = 0, the ion will stay confined to the z = 0 plane, where the motion is one-
dimensional and therefore integrable. The integrable motion in the z = 0 subspace is briefly

described in the following section.

I1.B Types of orbits

The possible types of orbits in the z = 0 subspace have been previously discussed. [16, 17]
For positive values of P, there are two possible shapes for a potential well V' as a function
of r. It is either a double well with minima touching zero or a single raised well. Figure 2
shows different shapes of V', for various values of P in the z = 0 subplane. Higher values
of P result in a shallower potential, see also Eq. (7), until there is a transition to a single
raised potential at a critical value of P, = 1/4. Figure 3 shows cross-sections of the potential
as a function of r for different values of z. It can be seen that the double potential becomes
shallower as |z| increases, eventually turning into a single raised potential. For values of
P above the critical threshold, the entire potential well becomes further raised as the ion
travels towards higher absolute values of z.

To explain the different types of orbits observed, it is worth noting that the potential
V in the reduced two-dimensional system is actually the kinetic energy in the ¢ direction
in the full three-dimensional system. This is due to the fact that only magnetic fields are
present, which exert a Lorentz force perpendicular to the direction of motion: F= qu X é,
therefore the total kinetic energy is conserved. It follows that

1 A\ 2
H = om [pf +p2+ <mr¢) } (12)

Comparing Eq. (12) with Eq. (6), it is clear that the last terms are equal. Since r?¢? is

proportional to V, it follows that </5 changes sign whenever the potential V' touches zero
(except at the transition to a single raised potential), therefore the ion reverses its angular
direction of motion. Based on the types of potential described above, we can now explain
the three possible types of orbits observed in the FRC for positive values of P, see Figure 4.
First, there are cyclotron orbits which correspond to oscillations in one of the two wells of the

double potential in the radial direction. They are unstable to displacement from the mid-



plane and therefore tend to travel to higher absolute values of z. The second type of orbits
are figure-8 orbits which oscillate over the entire double potential. Since the barrier dividing
the two wells exerts a repelling force, as can be shown by plotting Eq. (11) as a function
of r (keeping z constant), higher energy figure-8 orbits are stable around z = 0 while lower
energy ones, which spend more of their time transversing the barrier are unstable around
z = 0. All double potential wells become shallower as an ion moves towards higher values of
|z|, so that all cyclotron orbits will eventually have enough energy to cross the barrier in the
double potential (for some non-zero value of z) and turn into figure-8 orbits, thus eventually
feeling a restoring force towards z = 0. The third type of orbit is the betatron orbit, shown
in Figure 2¢, which corresponds to oscillations in a raised potential. It is characterized by
q3 > 0 at all times, which is explained by considering that the potential V' never touches zero,
and therefore ¢ never undergoes a sign change. Betatron orbits are stable to displacements

from z = 0.

RESONANCES AND CHAOS

ITI.A Averaged equations of motion

The Hamiltonian in Eq. 7 can be expanded as,
H = H’I‘O (p'rar) +HZO (pz,Z) +€H1 (T: Z) (13)

where Hy = H,g (py,7) + H,o (p., 2) is the uncoupled, integrable portion of the Hamiltonian,
and e is the magnitude of the coupled terms. If H; is normalized to the same magnitude as
Hy, € gives the degree of perturbation to the integrable portion of the Hamiltonian, Hy. The
above Hamiltonian can be expressed in action-angle variables of the uncoupled Hamiltonian,
H,.

H = Hyo (Jro) + Hao (J2o) + €H (5,05 (14)

where J; = (Jro, J»0) and Oy = (0r0,0,0) are the conjugate action-angle variables of Hy.

Actions J,.o and J,q are the areas enclosed by the unperturbed trajectory in phase space,

1 1
_ - 1
Jo = o prdr g0 o p,dz (15)

where the integrals are taken over one oscillation in their respective coordinates. H,y and

H,y are used to evaluate p, and p,, respectively, used in Eq. (15). The equations of motion
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can be written as

OH,;

. OH, OHy OH,o
a91"0,

—€ 3 07"0 = Wrp = 0z0 =Wz =
00,

dJro’ 0J 0

where w9 and w,q are the frequencies of the unperturbed Hamiltonian Hy and (6,9, 6,0) are

er = ij =

(16)

defined using a generating function [6],

S = Z /q:pqdq (17)

q=r,z
where
a5 0S
0,0 = 0,0 = 1
" 9J. 7 8, (18)

The perturbation term H; can be expanded in terms of action-angle variables:
o0
H1 = Z Hl,m (J()) exrp (Zﬁ . (90) (19)
I,m=—00
where 77 = (I,m) is an integer vector. In (r,z) variables H; can be obtained from the

Hamiltonian in Eq. (7),
1
eHy = —r?B22% + r'p%2% + §r2ﬂ4z4 (20)

If the coupling is sufficiently small and there is sufficient nonlinearity, such that the con-
ditions of KAM theory are satisfied, there exist a series of resonances bounded by KAM
curves. The KAM curves are perturbed from the uncoupled Hamiltonian Hy and can be

obtained using perturbation theory. Resonance occurs whenever
SWro — qwao = 0 (21)

where s, ¢ are integers and wy, w,o are given by Eq. (16). When the condition given by Eq.
(21) occurs, there are slowly varying terms in the exponent of the expansion of H; in Eq.
(19), leading to a significant perturbation in the Hamiltonian.

In the absence of resonances, the Hamiltonian given by Eq. (13) can be averaged along z
and r to obtain averaged motion along r and z, respectively. This is equivalent to averaging
Equation (14) over 6, to get the averaged r motion and over 6,, to get the averaged z
motion, with H; given by Eq. (19). All the angle dependent terms in H; will average to
zero, except for the resonant terms [7, 10] After averaging Eq. (13) over z and r, we obtain

H, (r) and H, (2), respectively, which represent averaged Hamiltonians for r and z motion,

H, (r)=Hyo (pr,7r) + e(H; (1, 2)), (22)
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H,(z) = Hy (p., 2) + €(Hy (1,2)), (23)

Using these new Hamiltonians, and following the same procedure as before, one can obtain
the new actions J, and J,, that would contain higher-order corrections to J,o and J,5. The
frequencies w, and w, obtained using H, (J.) and H, (J,) can then be used to find the
location of resonances, when

Swy —qw, =0 (24)
Here, (w,,w,) are corrections to (wyy,w,). To find the averaged Hamiltonian along z, we
need to substitute an approximate solution for the » motion into Eq. (7) The motion along

r can be approximated as

r &y + Acos (w,t) (25)
where 7}, is the midpoint of oscillation. It is found by setting the derivative of the potential
in Eq. (8) equal to zero and solving for r. Eq. (25) takes the first term in the Fourier
expansion of the motion along r. For 3222 < 1, rj, can be approximated as

1/2

=~ (K — K28°2°) (26)
where
1 1 .
Ki=c(1+C);  Kp=2(1+1/C);  Ci=(1+12P) (27)

Substituting Eq. (25) into Eq. (7), expanding and keeping only the highest order non-
oscillatory terms, we get the averaged unperturbed Hamiltonian along z:

H,~ %pz + % (DZBQZ2 + Fz,34z4) (28)
where D, is a function of P and A, with A given by Eq. (25). The value of F, is not
dependent on P, as can be easily confirmed by expanding the potential. It follows that the
magnitude of the z* term in Eq. (28) stays constant as P is increased. The quadratic term
however, changes significantly as P is varied, which can be seen by expanding the potential
given in Eq. (7).

To obtain H,y, we follow a similar procedure as that used to obtain H,; and approximate

the motion along z as,

Bz & Bcos (w,t) (29)

where B is the amplitude of oscillation along z. B < 1 for ions confined inside the FRC.

It is convenient to change variables to Ar = r — ry, where ry = Kll/2 (see Eq. (26)). Since

9



this is a simple coordinate shift, the momentum, p,, is not effected by the transformation.
Substituting Eq. (29) into Eq. (7), we get, after expanding the P?/r? term in a series and
dropping higher order and oscillatory terms,

1 1
H, ~ §p3 +5 (D, &1 + M, Ar® + F,Ar) (30)

The coefficients D,, M,, and F, are a function of azimuthal angular momentum P, and,
in higher order, depend on B, or the amplitude of oscillation along z. To lowest order
(neglecting amplitude dependent terms), the coefficients in Eq. (30) can be expressed in
terms of K and K> (see Eq. (27)) which are functions of P only. Approximate expressions
for F. and F, as functions of K; and K, will be given in the next section, where the
contribution of these terms to nonlinear resonance is discussed. The above approximations
fail for low amplitude cyclotron orbits whose motion can not be expanded around ry = K 11 2,
The measure of such orbits in phase-space decreases with increasing azimuthal angular
momentum, P.

Egs. (28) and (30) give approximate unperturbed averaged Hamiltonians for the z and r
motion. From these equations, the actions J, and J, can be obtained using Eq. (15). These
actions will be approximately conserved in the absence of resonances. Expressing H, and
H, in terms of J, and J,, respectively, the frequencies of averaged r and z motion, given by

Eq. (16), become ~ _
oR, ok
o5, %7 o,

In the next section, the approximate dependence of H, on J, and H, on .J, is derived and

(31)

Wy =

the frequencies w,,w, obtained for the case of “intermediate” values of P where Eqs. (28)

and (30) become further simplified.

II1.B Nonlinear resonances

The averaged Hamiltonians derived in the previous section can be used to find the location
of nonlinear resonances. Figure 5 shows the lowest-order values of the coefficients in Eqgs.
(28) and (30), as a function of P for the averaged r and z motion. The higher-order amplitude
dependent terms are not included since they vary with different trajectories. It can be seen
that all except the fourth power coefficients are zero around P ~ P.. Amplitude dependent
terms make a positive contribution, shifting the coefficient curves upward and causing them

to intersect the P-axis at a lower values. Since P. denotes the transition to betatron orbits
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and a typical FRC has a significant amount of figure-8 and cyclotron orbits, this range of
P values can be considered as “intermediate”. Thus in this intermediate range, centered
around P; < P., the fourth power terms predominate for both r and z motion. For typical
ion energies used in the numerical simulations, which allow the ion to explore most of the
FRC while remaining inside it, this range is around (3/4)P, < P < P.. Approximating H,
and H, in Eqgs. (30) and (28) for intermediate values of P, we get

_ 1 1

H, ~ -p? + -F.Ar* (32)
2 2

7o iy Lo

H, ~ 5P + 2Fzﬁ z (33)

It will be shown later that variations in F,. and F, have a weak effect on the unperturbed
frequencies, w, and w,, respectively. It follows that higher order terms can be dropped
without having a significant effect on frequencies. After dropping higher-order amplitude

dependent terms, the coefficients can be approximated as:

4P  P?
Fo~—2+415K 4+ — + — 34
TI5K et (34)
F,~ K, + 2K, — 4K\ K, — 2K? + 3K, K? (35)

For motion along z, the A? amplitude terms (obtained by substituting Eq. (25) into the
Hamiltonian) make a positive contribution to quadratic and fourth power terms, and thus
contribute to stability around z = 0. It follows that oscillations that have higher energies
along r are confined closer to the midplane [17, 18]. Both K; and K, (see Eq. (27)) are
less than one at intermediate values of P. Looking at Eqs. (34) and (35) or Figure 5, it
can be seen that F, > B*F,, except at “high” values of 3 (close to two), corresponding
to oblate geometry. Comparing Eqs. (32) and (33), it can be seen that for the same
amplitudes of oscillation, the frequency of motion along r will be significantly higher than
along z. Keeping in mind that for these nonlinear oscillators, the frequencies of oscillation
increases with amplitude, it becomes clear that the important primary nonlinear resonances
(those that have the greatest island width and can therefore be easily observed) occur when
H, < H,.

Using Egs. (32) and (33), we can now derive primary nonlinear resonances defined as:
wz/wr = S/q (36)
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where s, ¢ are integers and w,., w, are the unperturbed frequencies.

Equations (32) and (33) have a Hamiltonian of the form:

1 1
H= 5p2 + 5F(f =FE (37)

where F' and E are constants. The Action integral in this case is equal to:

2 dmax
J=1= / (2E — F¢")"* dg (38)
0

™

where ¢ = 2E/F )1/ *. Expanding the expression inside the integral using the formula

G (2o +Lz) = Y G™ (x0) (Anf)n (39)

where G™ () signifies the nth derivative of the function, we get:

o)~ 1/2 ©_ (o) (1/2-n) Frgin nl o
R e W i | CRUICT
n=2 =1

Substituting Eq. (40) into the integral in Eq. (38), and integrating, we get an expression
for J
J = aBE3F714 (41)

where a is a constant
27/4 \/§ n—1
1—— - (25 —1)] 42
o= Zanv 4n+1]1:[1 g (42)
rearanging Eq. (41) and using Eq. (37) to get an expression for the Hamiltonian H in terms

of the conserved action variable J, we get:
H = a_4/3F1/3J4/3 (43)

with @ defined by Eq. (42). Applying Hamilton’s equation § = w = dH/dJ to Eq. (43) and
then substituting for J from Equation (41), we get an expression for frequency as a function
of energy.

4

W= (HF)'* (44)

To find the averaged frequencies w, and w,, F' in Eq. (44) has to be replaced by F, and
B*F,, respectively. Likewise, H should be replaced by H, and H, or H, and H, which are

easily calculated from H at z = 0:

1
H, = ipf +V(r,0); H, = —pz (45)

12



and are close to H, and H, near the elliptical center of the resonance (in accordance with
Birchkoff theorem) [7]. Note from Eq. (44) that w is not sensitive to small variation in F’
and H, thus we were justified in dropping smaller order amplitude of oscillation dependent
terms in the expressions for F, and Fj.

From Eq. (44), we can now obtain a general criteria for nonlinear primary resonance that
occurs at intermediate values of P where Egs. (32) and (33) apply. Using the expression for
frequency given by Eq. (44) and Eq. (36)

H,F,p* 4
i =) 40)

The equation shows that small changes in s/q require large changes in H,/H,

ITI.C Location of resonances and the effect of geometry

The amount of stochasticity and location of resonances is strongly affected by geometry
of the fusion vessel. Eq. (46) can be used to compute the location of various nonlinear
resonances and explore the effect of changes in geometry (variation in 3). For example,
taking f = 1 as a convinient starting point, and using Eq. (46), there is a one-to-one
primary resonance around H, = (F,/F,) H,.

To find the location r of this resonance for the initial condition p, = z = 0, we need to
use a “high” value of total energy H, which allows the ion trajectory access to most of the
vessel, while not going far outside the boundary set by ® = 0 so that the conditions under
which Eq. (33) was derived are satisfied (see for example Figure 6). Starting from initial
conditions z = p, = 0 and using Eq. 45, we get: H, = %pﬁ, H, =V (r,0), when t = 0.
Applying the conditions H, + H, = H and H, = (F,/F,) H, to express H, in terms of the
total energy, the location, r, of a one-to-one resonance at z = p, = 0 is found by solving the
following equation for 7.

HF,/ (F, + B*F,) =V (r,0) (47)

Figure 7 shows one-to-one resonances close to r ~ .58,.95, values which agrees well with
the ones obtained by solving the above equation. Lesser values of total energy H shift
the location of this resonance inward towards lower values of r, while higher H shift the
resonance outward. This is explained by using Eq. (46) where an increase in H would lead
to proportionate increases in H, and H, (keeping everything else constant) and therefore an

outward shift in the location of a one-to-one resonance towards higher values of V (r,0).

13



From Eq. (46), we can see that (keeping ¢ constant) the number of islands s in a single
resonance on Poincare p, vs r plot increases as H, decreases, keeping the total energy H
fixed. H, is determined by A, the amplitude of oscillation along . Since A = r — 1y,
where r is taken at p, = 0, we expect to get an increasing number of islands corresponding
to s = w,/w, = 1,2,3..., as A becomes smaller, or as we get closer to the midpoint of
oscillation at r = r,. Figures 7 and 8 show the increase of islands near the midpoint of
oscillation at rp, &~ .7.

As can be seen in Eq. (33), F, is multiplied by 3%, so that substituting F,3* for F into
Eq. (44), we can see that w, increases linearly with 3, while w, which depends only on F,

and H, is uneffected. From Eq. (46), a one-to-one resonance occurs whenever

H, F

H,  BF,

(48)

It follows that an increase in 3 has a strong effect on the shift in the location of a one-to-one
resonance towards higher amplitudes along r. Comparison of Figure 7 and Figure 9 shows
this shift towards higher value of H, with an increase in 3. F, ~ 8*F, for high values of 3
(around S = 2), corresponding to oblate geometries. Figure 10 shows s/q = 3/2 resonance
around H, = 3H,, close to what we would expect using Eq. (46). Increasing 8 will lead to

a proportional increase of s, the number of islands, keeping everything else the same.

II1.D Overlapping of resonances and the onset of strong chaos
The width of an island in a nonlinear resonance depends on the strength of the pertur-
bation, € (see Eq. (14)) and «, the degree of nonlinearity of the unperturbed Hamiltonian

Hy. The nonlinearity « is defined as [8]

J 0w
= —|=— 49
a=—lo7 (49)
In terms of the unperturbed frequency w, the width of an island is given by:
A
MATEY — (ea)? (50)
w

To understand the destruction of KAM surfaces and the occurance of strong chaos, we
introduce Chirikov’s parameter K_:
AJ

K. =—2
© 6

(51)
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where AJ is the maximum width of the island chain (in action variables) and §.J is the
distance between neighboring resonances. When K, < 1, the island chains are clearly
separated by KAM curves, between which the trajectories are confined. The resonances
begin to overlap when K, > 1, leading to an onset of strong chaos, characterized by stochastic

behavior over much of the phase space. Approximating,

Oow

Aw=—ANJ 52
57 (52)
ow

ow = —0
57 J (53)

We can rewrite the criterion for the onset of strong chaos in terms of w:

Aw
K. = > 1 54
S (54)

To estimate the upper limit on K, lets calculate the overlap of the ¢ = 1 resonances. From
Eq. (36) the condition for s-resonance is w, = sw;,, where w, and w, are functions of H, and
H,, respectively. Rewriting the above equation after substituting for w, from Eq. (44) we
get,
- 1/4
w, (H,) = 83— (F.H,) (55)

Where w, (ﬁz) indicates that w, is a function of H,. H, and H, are the energies of the
averaged Hamiltonians along z and r, respectively, at the s-resonance. The s + 1 resonance

then occurs at H, + §H, and H, + §H,, where §H, + §H, = 0 to conserve total energy H.

_ _ . i = \1/4 5Er
ws (Hs + 0Hy) = (s +1) o (FHy) (1 4Hr) (56)

1/4

where we have used the expansion (H, + 0H,) ~ H/* (1+6H,/4H,). Expanding Eq.

(56), and dropping the smallest term, we get:

w, (H, +6H,) = si (FTHT)M (1 + jgr> n 34_a (F, _T)1/4 (57)

For s < 10 resonances, s (§H,/4H,) < 1. Thus Eq. (57) becomes:

_ _ 4 _ 4
w, (H, +6H,) = s— (F.H,)"" + — (F,H,)"* (58)
3a 3a
Combining Eq. (58) and (55) and using Eq. (44), we get an expression for dw,
- = = 4 = \1/4
dw, = |w, (H, + 0H,) —w, (H,) | = = (FH,)"" =w (59)
a
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Using Aw, = (ea)1/2 w, from Eq. (50), K. becomes:

_ sz _ 1/2 Wy
o= 5 () (60

Thus the criterion for the overlapping of ¢ = 1 resonances is:
K, = (ea)?s>1 (61)

This actually sets the upper limit on K., since other resonances will overlap before the
overlap of the ¢ = 1 resonances, resulting in an onset of strong chaos at a lower value of
K. then that given by Eq. (61). The exact form of the dependence of ¢ and o on P and 3
is difficult to obtain, since it would require the expression of the full Hamiltonian given by
Eq. (7) in action-angle variables. However, we can find the qualitative relationship between
the two sets of variables and thereby explain the overlapping of resonances and the onset of
strong chaos observed with variation of P or 8. Multiplying out the terms in Eq. (7), we
get:
1[P?

e L R (R, )

In Ar coordinates (see Eq. (30), where the expansion around 7y leads to the cancella-
tion of linear terms), the second term in the above equation is quadratic, and the leading
contribution from the first term is also quadratic, and therefore linear in the equations of
motion. It follows that most of the nonlinearities in the Hamiltonian come from the third
P-independent term, which also contains coupling. It can therefore be concluded that de-
creasing P will increase the relative contribution from the nonlinear and coupling terms, and
therefore increase both the nonlinearity parameter o and the coupling e. From Eq. (61), an
increase in «, € will result in a greater overlap of resonances and an eventual onset of strong
chaos. Figure 8 shows a set of resonances well bounded by KAM curves, we therefore expect
that K. < 1 for this set of parameters. Figure 7, plotted for a lower value of P, shows an
overlap of resonances. Although some of the island structure is retained and we can still see
the location of the different s-resonances, the distruction of the bounding KAM curves has
occured, resulting in greater region of stochasticity, as compared to Figure 8. Thus K, > 1
in Figure 7, showing a transition to strong chaos.

An increase in (3 increases the overlap between resonances and therefore chaotic behavior
by increasing € in Eq. (61). This can be seen by looking at Eq. (10), where the coupling

term is the last term in the equation. Since this term is strongly dependent on [, we can
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expect that an increase in 8 will also increase the perturbation coefficient ¢. The overlap of
resonances and the onset of strong chaos caused by increasing 5 can be seen in Figs. 7, 9-11
where the value of § is varied, while P is kept constant.

Thus variation of P or [ effects the degree of stochasticity through o and ¢, which as

shown in Eq. (61), determine the Chirikov parameter K.

III.E Adiabatic limit

Eq. (46) shows a linear dependence of s on 8 and a much weaker —1/4 power dependence
on H,. As mentioned before, in the z = 0 subplane, the coordinates separate so that H,
and H, can be replaced by H, and H,, respectively (see Eq. 45), as long as the motion is
not too affected by the resonance. Using Eq. (46), we expect a decrease in  to strongly
shift the location of a one-to-one resonance towards smaller values of H, or closer to the
midpoint of oscillation at = 7y, in the z = 0 plane. Figure 11 shows this for § = 1/2.
There is only a thin layer of stochasticity close to the separatrix, due to the very low values
of H, (or amplitude of oscillation A) where the resonance occurs.

As the value of g is further decreased, the quadratic terms in Eq. (28) can no longer
be neglected, leading to behavior different than what would be expected based on previous
analysis (Figures 12 and 13). To understand the motion at 3? < 1, let us turn to Egs. (10)
and (11). Tt can be seen that there is a separation of time scales between r and z motion in
the limit of small 5. Since the motion along r is much faster than the motion along z, J,.
is a conserved adiabatic invariant, except during the crossing of the separatrix [17, 19, 20].
At the approach to the separatrix the frequency, w,, slows down leading to a break-down
of w, > w, condition required for the adiabatic invariance of .J.. The change in J, during
each crossing is ~ Sin (f). [21] This leads to mostly chaotic orbits inside and close to the
separatrix as shown in Figure 13.

To avoid the crossing of the separatrix that occurs during a transition between cyclotron
and figure-8 orbits, the action J, has to be high enough so that the ion executes a figure-8
orbit with w, > w, when it passes z = 0 subplane. To ensure the adiabatic invariance of .J,,
we can find a lower limit on its value by choosing Hypmin = (1 + d.) V (rp,0), where §, < 1

[22], calculating the resultant p, as a function of r, and substituting it into the integral in
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Eq. (15). The condition for integrable orbits becomes:

J,,>217T%{(1+5C)V(rh,o)-[1:r(1_ra)r}5dr (63)

The above integral is the action of the ion in the z = 0 subspace when H, is just high
enough for the ion to pass over the energy barrier at some finite speed and execute figure-8
orbits. i = K is the location of the top of the barrier evaluated at z = 0 (Equation 26).
The factor of (1 + §.) insures that the motion is not too close to the phase-space separatrix.
Since J, is conserved for integrable orbits, Eq. (63) provides a threshold above which orbits
are integrable.

Figure 14 shows the area inside the phase space separatrix, J,, in the z = 0 cross-section
as a function of P. All orbits passing through the z = 0 plane with J < J,,, will cross the
separatrix as the area inside shrinks with motion towards higher |z| values. This leads to
mostly chaotic orbits inside and close to the separatrix as shown in Figure 13. The shrinking
of the area inside the phase-space separatrix is due to the drop of the potential barrier along
r as the ion moves towards higher absolute values of z (see Figure 3). Thus most of the
cyclotron orbits in the low S limit should be stochastic due to a repeated violation of J,.
Above a critical value of P = P,, all cyclotron orbits disappear and only betatron orbits

exist, we would therefore expect mostly integrable orbits.

UNIVERSAL RESONANCE AND INTRINSIC DEGENERACY

At higher values of P, the quadratic terms become more important for ions confined to
the FRC. This can be seen in Figure 5 where the quadratic coefficient crosses zero below P,
(if the amplitude terms are taken into account) and continues to increase as P increases. It
follows that at higher values of P (about P > 6P,/5 for the energies used), the unperturbed
Hamiltonian can be expressed as uncoupled simple harmonic oscillators. Expanding the
Hamiltonian in Eq. (7) around rq = Kll/ ® so that Ar = r — 1y, and grouping all non-
quadratic terms under the perturbation term, H;, we get

1 1 1 1
H = §p72~ + §p§ + §D'I‘0AT2 + EﬁQDzOZZ +€eHy (r,2) (64)
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where D, and 52D, are the coeflicients of the quadratic coordinate terms in the expansion

of the Hamiltonian

3P?

D,y =1+2P — 12K, + 15K? + T (65)
1

B’D,o = B (2P — 2K + 2K7) (66)

with K is given by Eq. (27).

In action-angle variables the coordinates of a simple harmonic oscillator are given by [7]

1/2
Ar = (21%]7) sinb, (67)
py = (2J,R,)"* cos, (68)
1/2
z= (2]%]z> sin, (69)
P, = (2JZRZ)1/2 cost, (70)

where R, = D%Z and R, = BD%% Substituting action-angle variables from Eq. (67), (68),
(69), and (70) into the expanded Hamiltonian in Eq. (64), we get

H=wJ +w,J,+ecH (f, 5) (71)

where w, and w, are the frequencies of the unperturbed quadratic Hamiltonian,

Wy = D%Q W, = BD%Q (72)

In action-angle variables, H; can be expanded as:

o0

H, = Z H,,, (f) exp (m’ : 0_) (73)

I,m=—o

In the absence of resonances, Eq. (71) is integrable and the conserved invariants, close to J,
and J,, can be found by applying standard perturbation theory and expanding in the same
way as for a one-dimensional system. The terms in H; can be easily found by expanding the
Hamiltonian around ry, as was done in Eq. (64), and substituting action-angle variables,
given by Eqs. (67)-(70). The exact expression for H; _; will be given below, relating to a
discussion of a 1 : 1 universal resonance.

A resonance will occur whenever the conditions of Eq. (24) are satisfied, with w, and w,

given by Eq. (72). The width of the island in a resonance for a Hamiltonian given by Eq.
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(71) should be large, due to the intrinsic degeneracy, since the unperturbed frequencies, w;
and w,, are constant, thereby leading to a universal resonance. In this case, transforming to

a rotating frame:
J, = sjl; J, = Jy — qjl; 0, = s6, — q0,; 0y =0, (74)

the unperturbed Hamiltonian in Eq. (71) is a function of ¢J, + sJ, (where w,/w, = s/q) or
in rotating coordinates:
ﬁo = I:IQ (jg) (75)
that is, Hy is independent of Ji.
Following Lichtenberg and Lieberman [7], in the presence of a resonance in an intrinsically

degenerate system (where w, and w, are constant), the perturbation to the Hamiltonian is
_ 1 N2 1 N2
AH =G (AJl) +5F (Aal) (76)

where the bar above A H signifies that averaging over the fast variable 0 has been performed.

(G is a nonlinearity parameter proportional to €

0’H 0%H, _
Pl P i I | (77)
aJ%, aJ%,
F' is also proportional to €,

F = —2¢H, _, (78)

Eq. (76) was obtained by transforming to rotating coordinates f and 5, where 6, and 6,
are the slow and fast variables, respectively. Then averaging over the fast variable ég, and
expanding the highest order resonant terms around the elliptic point of the resonance at
Ji = Jig and 6; = 0. Since the nonlinearity parameter G in Eq. (76) is small (of order
€), we can expect maximum excursion in AJ; to be large. This explains why intrinsically
degenerate systems have large resonances [7].

The equations given above can be used for analytic study of specific resonances that occur
at different values of 8. Equations (65) and (66) determine the range of values of P and 3
for which different resonances occur. Figure 15 shows D, and 32D, for 3 = 2 plotted as
a function of P. It can be seen that the two coefficients are close for a range of values of
P, creating a universal one-to-one resonance. To estimate AH and AJy, (or AJ,), for the

case of the one-to-one resonance, we express eH; in action-angle variables and find G and
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F = —2¢H, _4, in accordance with Egs. (77) and (78). Changing back to (J,, J,) variables,
keeping only the terms of lowest power in f, a valid approximation for ions confined inside

the FRC, we get

1 15P?
1

To compare the magnitudes of G and F', keep in mind that K 11 /% is the midpoint of oscillation

in the z = 0 subplane, so that for the ions oscillating inside the FRC: K; ~ 1/2. In
dimensionless variables adopted throughout this paper, the magnetic field separatrix (to be
distinguished from the phase-space separatrix) at z = 0 is located at r = 1. From Eq. 76

the maximum fluctuation in energy for a one-to-one resonance is given by,
AH =~ (7°/2) F (81)

with F' given by Eq. (80). The maximum change in J, for a one-to-one resonance can be

estimated by setting .J, = J; (see Eq. (74)) and using Eq. (76) to obtain:

ONCSRE

Substituting Eqgs. (79) and (80) into Eq. (82), using J, ~ J,, we get,

Eues 0 1) (53)
indicating that the changes in action in a universal resonance are large. Figure 16 shows
a universal one-to-one resonance that occurs at § = 2 for a range of values of P. The
fluctuations caused by the resonace are large due to the intrinsic degeneracy of the system

in this regime.

CONCLUSION

After reducing the three-dimensional Hamiltonian of an ion inside the FRC to that of
a particle moving in a two-dimensional potential, possible types of ion orbits for positive
azimuthal angular momentum P were derived. Then the effects of variation in P and inverse
elongation 3 were investigated. A method of averaging was used to study the structure of

nonlinear resonances. It turns out that at intermediate values of P, the fourth order terms in
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the averaged Hamiltonian predominate. In this case, the unperturbed frequencies w, and w,
can be derived as a function of the averaged Hamiltonians H, and H,, respectively. Based on
these frequencies, the occurance of various s resonances, where s = w, /w,, can be calculated.
It was found that increasing S shifts the location of the resonance outward towards higher
values of H, . High values of g are found to produce high s resonances. The structure of the
resonances was such that higher s resonances were found closer to the midpoint of oscillation
along r. The dependence of Chirikov’s island overlap parameter, K., on the magnitude of
the perturbation € and nonlinearity o was derived and the qualitative relationship between
€, o and 3, P discussed. It was found that lowering P or increasing f cause an increase in €
and «, leading to a greater overlap of resonances and the eventual onset of strong chaos. In
the adiabatic regime, occuring for large elongations (small 3), orbits outside the phase-space
separatrix, in the z = 0 subplane were shown to be integrable, while the majority of orbits
inside the phase-space separatrix were not. This is due to separation of time scales w, > w,
that occurs for orbits which do not cross the phase-space separatrix.

Next, the universal resonance resulting from intrinsic degeneracy of the Hamiltonian at
higher values of P was investigated. Under these circumstances, the unperturbed frequencies
are constant, and the Hamiltonian can be expressed in action-angle variables of a simple
harmonic oscillator. The width of the resonances can then be derived from the perturbation
term H,;. For high P case, most of the orbits are integrable, except in case of a resonance
when w, /w, = q/s, where g and s are integers. After deriving an expression for unperturbed
frequencies in this degenerate regime, a universal one-to-one resonance was found analytically
and numerically at § = 2 for a range of values of P. The width of this resonance was
estimated and the fluctuations in action found to be large (of order one), as would be

expected for a degenerate case.
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FIG. 1: Geometry of the Field-Reverse-Configuration of magnetic field. Lines correspond to the

cross-section of surfaces of constant magnetic flux, ® (See Eq. (2).
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FIG. 2: Possible shapes of potential in the z = 0 subplane. a) P=.17 b) P=.22 ¢) P=.29 Below
P = P, = 1/4, the potential has a shape of a double well, and above a raised single well. The top

of the potential barrier occurs at 7, (P, z), see Eq. (26)
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FIG. 3: Cross-sections of the potential V' for P = .2: a) z=0; b) z=.2; ¢) z=.3  For positive P
ions, the barrier in the double potential drops as |z| increases, until it turns into a single raised
potential. The barrier between the two zeros in the potential is the ¢ < 0 part of the orbit, while

q.S > 0 to the left and to the right of the potential barrier.
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FIG. 4: Possible types of particle orbits for P > 0. Orbits are taken in the z = 0 invariant
subspace. The outer circle indicates the zero in magnetic flux, ® (also the boundary of the vessel).
The inner circle is the location of the magnetic null, where field reversal occurs. a) Cyclotron orbit:
ion oscillates in the outer portion of a double well, P = .2; b) Figure-8 orbit: ion oscillates over

the entire double well, P = .2; c¢) Betatron orbits: oscillations in a raised potential, P = .35
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-0.2

FIG. 5: Approximate coefficients for the averaged motion, neglecting amplitude contributions. a)
F, is the coefficient for the fourth power term of H,. D, and M, are coefficients for the quadratic
and third power terms, respectively. Although they seem to intersect the x-axis around P = P,,
amplitude dependent terms cause D, and M, to shift upwards, lowering the value of P at which
these terms are negligible. b) F, is the coefficient for the fourth power term of H, and D, is the
coefficient for the quadratic term. Like in the above case, higher order amplitude dependent terms

cause D, to shift upwards.
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FIG. 6: Cross-section of a trajectory inside the FRC exploring most of the vessel while remaining
within its boundaries. Boundary of the vessel occurs at ¢ = (1 —r?_ 62z2) = 0. Plotted in scaled

dimensionless variables, E denotes total energy. £ = .063, 7 =0, P= .25, =1
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FRC surface-of-section taken at z=0

0. 0.3 0.6 0.9
0.5 - . T
0.25¢ 10.25
/
/%
/
N
g |
"UI 0 1 10.
—
oo )
\ &
P |
—025¢ 1025
- : : —0.5
0.3 0.6 09 1.2

r

FIG. 7: Overlapping of resonances, leading to an onset of strong chaos (compare with Figure (8)).
The arrows in the figure point to the elliptic centers of the 1: 1 resonances. The number of islands

increases near the midpoint, 7, = .7. £ =.063, P= .23, =1
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FRC surface-of-section taken at z=0
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FIG. 8: Set of nonlinear resonances separated by KAM curves. The number of islands increases

closer to the midpoint of oscillation, r, where r, = .7. E = .063, P =.258, § =1
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FRC surface-of-section taken at z=0
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FIG. 9: Outward shift of the outer 1 : 1 resonance due to an increase in 8 in a strongly chaotic

regime (compare with Figure (7)). E = .063, P = .23, § = 1.2
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FRC surface-of-section taken at z=0
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FIG. 10: Resonance at higher 5. Arrows point to the elliptic centers of the outer 3 : 2 resonance.

E=.063,P=.23 =2
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FRC surface-of-section taken at z=0
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FIG. 11: Shifting of resonances towards the midpoint and the decrease of chaos with decreasing
B. Location of 1 : 1 resonances shifts closer to the midpoint of oscillation, r, = .7, as 8 is lowered.

E=.063, P=.23 8=1/2
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FRC surface-of-section taken at z=0
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FIG. 12: Chaos at lower values of § where the quartic approximation fails. £ = .063, P = .23,
B=.3
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FRC surface-of-section taken at z=0
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FIG. 13: The adiabatic limit occuring for small 8 values. Most orbits inside and close to the

separatrix are chaotic. £ =.063, P = .23, § = .2
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FIG. 14: The area inside the phase-space separatrix, J,s, in the z = 0 cross-section as a function

of P.
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FIG. 15: Quadratic coefficients of Hy as a function of P for the case of a universal 1 : 1 resonance

at f = 2. Below P = .25 fourth power terms dominate.
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FRC surface-of-section taken at z=0
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FIG. 16: Universal 1 : 1 resonance occuring as a result of intrinsic degeneracy, onset at higher P

values. £ =.063, P=.3, =2
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